Problem 1.1

Vector algebra 1*
Given two vectors $\mathbf{A}=(2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+7 \hat{\mathbf{k}})$ and $\mathbf{B}=(5 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}})$ find:
(a) $\mathbf{A}+\mathbf{B}$;
(b) $\mathbf{A}-\mathbf{B}$;
(c) $\mathbf{A} \cdot \mathbf{B} ; \quad$ (d) $\mathbf{A} \times \mathbf{B}$.

Solution

Part (a)

To find $\mathbf{A}+\mathbf{B}$, we add their respective components together.

$$
\mathbf{A}+\mathbf{B}=(2+5) \hat{\mathbf{i}}+(-3+1) \hat{\mathbf{j}}+(7+2) \hat{\mathbf{k}}=7 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+9 \hat{\mathbf{k}}
$$

Part (b)

To find $\mathbf{A}-\mathbf{B}$, we subtract the components of \mathbf{B} from the respective components of \mathbf{A}.

$$
\mathbf{A}-\mathbf{B}=(2-5) \hat{\mathbf{i}}+(-3-1) \hat{\mathbf{j}}+(7-2) \hat{\mathbf{k}}=-3 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}
$$

Part (c)

To find $\mathbf{A} \cdot \mathbf{B}$, we multiply their respective components together and add them. Note that $\mathbf{A} \cdot \mathbf{B}$ is a scalar, not a vector.

$$
\mathbf{A} \cdot \mathbf{B}=(2)(5)+(-3)(1)+(7)(2)=21
$$

Part (d)

To find $\mathbf{A} \times \mathbf{B}$, we evaluate a 3×3 determinant, where the unit vectors are in the first row, the components of \mathbf{A} are in the second row, and the components of \mathbf{B} are in the third row.

$$
\mathbf{A} \times \mathbf{B}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
2 & -3 & 7 \\
5 & 1 & 2
\end{array}\right|=\left|\begin{array}{cc}
-3 & 7 \\
1 & 2
\end{array}\right| \hat{\mathbf{i}}-\left|\begin{array}{cc}
2 & 7 \\
5 & 2
\end{array}\right| \hat{\mathbf{j}}+\left|\begin{array}{cc}
2 & -3 \\
5 & 1
\end{array}\right| \hat{\mathbf{k}}=-13 \hat{\mathbf{i}}+31 \hat{\mathbf{j}}+17 \hat{\mathbf{k}}
$$

